
Functional Testing Heuristics

A Systems Perspective
Joris Meerts, Testing References

© Testing References, 2012

Heuristic Definition Description

Sequence Order of succession Functions can be executed in a sequence. Vary the execution sequence of the

functions, also in situations where it does not seem logical to execute the

functions in that sequence.

Concurrence The simultaneous occurrence

of events or circumstances

Cause things to happen at the same time. For example in a web store try to

purchase an item and at the same time set the status of that item to

'unavailable'. In this case that would require two users acting upon the same

set of data.
Confluence A coming or flowing together,

meeting, or gathering at one

point

Think of a system as a set of flows that diverge and meet. Interesting things

may happen where flows meet.

Synchronization To represent or arrange

(events) to indicate

coincidence or coexistence

In larger systems information may be stored in several places and has to be

synchronized. Synchronization can be done in batch jobs, on demand or online.

Test what happens when information is synchronized or not.

Share To partake of, use,

experience, occupy, or enjoy

with others

Functions may share data resources or, for example, hardware resources. Test

what happens when functions require or manipulate the same things at the

same time.

Interaction Mutual or reciprocal action

or influence

Many functions interact. They pass on results, wait for eachother or are called

by another function. Learn the ways in which functions interact and test the

interactions.Funtions ins systems usually also have interfaces and therefore

interaction with the outside world.
Continuity Uninterrupted connection,

succession, or union

Continuity is often assumed in the functioning of a system but in real life

continuity, or uninterrupted functioning, might not always be the case. Break

continuity at interesting points in the system.

Hierarchy A graded or ranked series Not all functions are equal. It may be that some functions take precedence

over others or that functions are executed according to a strict hierarchy or

organisation. Use or break the hierarchy to manifest faults.

Priority Superiority in rank, position,

or privilege

Priorities in systems may depend on a lot of things and may be shifting

continuously. Ask yourself which functions have priority over others at a

certain point and use that information.

Dependency Determined or conditioned

by another

Systems usually contain a lot of depencies of different forms. Some of these

forms are mentioned in this document. Dependencies can easily be exploited to

find faults. The more dependencies, the merrier.

Repetition Renewed or recurring again

and again

Execute a function of a set of functions more than once, perhaps many times

successively. Execute the same function a number of times with slight

variations.

Loop A series of instructions (as

for a computer) that is

repeated until a terminating

condition is reached

Systems and funtions contain loops and maybe loops within loops. Shift your

mind by thinking of functions and systems in terms of (feedback) loops

(systems thinking) and see where it leads.

Parameter Any of a set of physical

properties whose values

determine the characteristics

or behavior of something

Many functions are parameterized, meaning that the behaviour of a function

is governed by (external) parameters or settings. Find out how the settings of

a function can be manipulated or are manipulated by the system.

Prerequisite Something that is necessary

to an end or to the carrying

out of a function

Some systems or functions require certain preconditions. More often than not

these preconditions are silent assumptions. A web application may, for

example, require a certain browser. Or a system may require certain system

settings, connections or versions of other software programs installed on that

system. Tinkering with the prerequisites may lead to some interesting

findings.
Configuration Relative arrangement of

parts or elements

Many things in a system can be configured, many more things than you'd

guess at first sight. Testers usually do not go too deep into configuration

settings but configuration may matter a great deal for some specific functions.

Learning about the configuration of a system can reveal relevant things.

Rule A prescribed guide for

conduct or action

In many systems there is some degree of separation of business rules and

functionality. There is often a blurry line between what is governed by rules

and what is governed by the function itself. Think of priorities, preconditions

and parameters. Look for things in this area.

In functional testing it is tempting to use test techniques to cover the paths through a program or function based on specifications. It is also

tempting to assume that once these paths or combinations have been covered functional testing is more or less complete. By the heuristics

displayed below I intend to show that functional testing can - and perhaps should - include a large number of system aspects that are not

regularly stated explicitly in requirements or in the design. I am certain that with these heuristics or points of view a number of interesting

functional aspects of a system can be highlighted.

This list is derived from my own experiences in testing a range of software products. I am also indebted to James Bach, who wrote the

SFDPOT heuristic, and Elisabeth Hendrickson, James Lyndsay and Dale Emery, who wrote the Test Heuristics Cheat Sheet.

1

Functional Testing Heuristics

A Systems Perspective
Joris Meerts, Testing References

© Testing References, 2012

Heuristic Definition Description

Customize To build, fit, or alter

according to individual

specifications

Customization of functions will occur when the system has users who have

different roles. This is always interesting. More often than not users can also

customize systems to their own needs and thus move away from default

values.
Constraint The state of being checked,

restricted, or compelled to

avoid or perform some action

Constraints, for example in the form of value boundaries, can be found all

across systems and functions. It may be interesting to see what happens at

boundaries at different levels of the system. Constraints also tell us something

about the capabilities of the system and what happens when we stretch those

capabilities. Another way of looking at it is that the test environment is a

constraint.
Resource A source of supply or support A resource can be anything that is used by the system. Commonly the system

uses processors and memory. What happens when those resource change or

become less accessible?

Access Freedom or ability to obtain

or make use of something

Functions have, and may require, access to other functions, data sources,

hardware etc… The capabilities of a function to access things may change.

Lock To fasten in or out or to

make secure or inaccessible

Locks are often applied to data in order to avoid manipulation of that data by

other functions. Locks are usually, at one time or another, released.

Investigate what locks do with the system.

State Mode or condition of being A systems is always in some condition or state. Try to identify conditions and

try to find out how certain conditions affect functionality.

History A chronological record of

significant events

Systems have a history of things that happened in the past. Testers usually

like to start from a clean sheet, a system without history. Users always work

with a system that has a history. Try to see how the history of a systems

influences its behavior.
Roll back To reduce to or toward a

previous level

Roll backs in a system are usually procedures that are executed when

something has gone wrong. A roll back intends to 'reset' the system to a valid

and functional state. But does it do that and how does a system behave after a

roll back?
Restore To bring back to or put back

into a former or original

state

Restore aligns with roll back but keep in mind the functions and the data that

are affected by a restore. Is the whole systems restored to a former state or

just parts of that system? What about the functions that are not supposed to

be affected by a restore?
Refresh To update or renew The most obvious refresh function is the Refresh or Reload function in any

internet browser. This may lead to some interesting observations. In some

applications, not necessarily in web applications, there are functions that

automatically refresh, or explicitly do not refresh, the content that is

displayed. How does refreshing information affect other functions?
Clone One that appears to be a

copy of an original form

Cloning is a concept in software design. Among other things systems,

functions and data sets can be cloned for a number of purposes. If you have a

separate test environment that can be considered a clone of (parts of) a

system. A view on one or more database tables could also be regarded as a

clone. In testing with clones beware of discrepancies and adjustments to the

system or function that was cloned.
Temporary Lasting for a limited time Many things in the system are not there forever and do not last forever.

Common examples of things that are temporary are temporary tables that

support, for example, the copying of information. But also files and objects

may be temporary. One way to look at this is to find out if temporary stuff is

cleaned up after use.
Trace A mark or line left by

something that has passed

Traces in software are important in functional testing. They can be found,

among other places, in logging and audit trails. Use traces or trails for root

cause analysis. But hey can also be used to gain more information about the

inner workings of a system.
Batch The quantity produced at one

operation

In many systems large portions of data are processed in batches. The testing

of batches and the functionality contained in batches may be a discipline in

itself. As a functional tester you should be aware that there is functionality

sheduled in batch operations that may do surprising things. It is not

uncommon that batches run without the tester being aware of such processes.

It is also not uncommon to switch off batch jobs in systems testing, leaving

options open for suprises in a later phase of testing.
Void Empty space For example; in a database 'empty' is not the same as NULL. Functions may

deal with empty values in an entirely different way than with NULL values.

Explore how functions deal with empty fields.

Absent Not present or attending For many different reasons data, certain parts of data, functions, applications,

resources and other things may be missing at one time. Examinate how

functions handle missing things.

2

Functional Testing Heuristics

A Systems Perspective
Joris Meerts, Testing References

© Testing References, 2012

Heuristic Definition Description

Feedback The transmission of

evaluative or corrective

information about an action,

event, or process to the

original or controlling source

Functions provide feedback in one form or another. In testing this feedback is

essential in verifying the result of a test. Beware that the feedback provided

by a function may not reflect the actual results of that function. Whenever you

use feedback to verify functionality, you may want to use other sources to

verify the feedback.

Saturate To treat, furnish, or charge

with something to the point

where no more can be

absorbed, dissolved, or

retained

Saturation may cause functional errors in systems at many levels. Try to

evaluate functional behavior with regards to large amounts of input data,

opening many screens in a GUI, using more than one user at the same time or

other aspects that can vary form zero to one to many.

Sort A group set up on the basis of

any characteristic in common

Sorting algorithms are everywhere in a system. They may or may not be

written down in specifications. Start from the point of view that data is always

offered to a function or operation in a sorted order. Try to break the sorted

order, mess up the order or try to sort in different ways and see what happens.

Scale A distinctive relative size,

extent, or degree

Size does matter. Scale is usually important in non-functional testing such as

performance testing. But by changing the scale of certain aspects of a system

functional errors can be found. Scaling for example the number of records in a

data collection or installing the system on much slower or quicker hardware

may reveal the limitations of certain functions.
Corrupt Characterized by improper

conduct

A system will, after having been used for a while, contain corrupt data or

settings. As testers we have a tendency to test with clean data. It will be hard

to assess in what ways data can become corrupt. Yet in our functional testing

strategy we may want to test with corrupt data.
Integrity The representational

faithfulness of information to

the true state of the object

that the information

represents

A systems is a model, a representation of aspects of a real world. Explore how

objects or, for example, data collections, in a system evolve due to the

operations that are executed. Try to find out if these objects represent aspects

of the real world over time and what may corrupt them.

Invoke To put into effect or

operation

A function may be invoke in different ways. When using a GUI the most

obvious distinction we can make is invoking functions by using strokes on a

keyboard or using mouse clicks. Functions may behave differently based on

such approaches.
Timing Placement or occurrence in

time

Time is always a part of a system. In functional testing we often tend to forget

that the time at which an operation is executed may contribute significantly to

its functioning and its result. Find functions that could to some degree depend

on, for example, system time or internal clocks. Also try to travel in time.

Delay To stop, detain, or hinder for

a time

Delays are part of many systems. In some systems delays in, for example,

response may be deliberate. But a unplanned delay may also be the result of

operations running on a system. Use delays to explore what happens if you

execute certain funtions within that delay. Also explore delays from a systems

thinking point of view to see how balances in system evolve.

3

